Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pleasurable music affects reinforcement learning according to the listener.

Identifieur interne : 001132 ( Main/Exploration ); précédent : 001131; suivant : 001133

Pleasurable music affects reinforcement learning according to the listener.

Auteurs : Benjamin P. Gold [Finlande] ; Michael J. Frank ; Brigitte Bogert ; Elvira Brattico

Source :

RBID : pubmed:23970875

Abstract

Mounting evidence links the enjoyment of music to brain areas implicated in emotion and the dopaminergic reward system. In particular, dopamine release in the ventral striatum seems to play a major role in the rewarding aspect of music listening. Striatal dopamine also influences reinforcement learning, such that subjects with greater dopamine efficacy learn better to approach rewards while those with lesser dopamine efficacy learn better to avoid punishments. In this study, we explored the practical implications of musical pleasure through its ability to facilitate reinforcement learning via non-pharmacological dopamine elicitation. Subjects from a wide variety of musical backgrounds chose a pleasurable and a neutral piece of music from an experimenter-compiled database, and then listened to one or both of these pieces (according to pseudo-random group assignment) as they performed a reinforcement learning task dependent on dopamine transmission. We assessed musical backgrounds as well as typical listening patterns with the new Helsinki Inventory of Music and Affective Behaviors (HIMAB), and separately investigated behavior for the training and test phases of the learning task. Subjects with more musical experience trained better with neutral music and tested better with pleasurable music, while those with less musical experience exhibited the opposite effect. HIMAB results regarding listening behaviors and subjective music ratings indicate that these effects arose from different listening styles: namely, more affective listening in non-musicians and more analytical listening in musicians. In conclusion, musical pleasure was able to influence task performance, and the shape of this effect depended on group and individual factors. These findings have implications in affective neuroscience, neuroaesthetics, learning, and music therapy.

DOI: 10.3389/fpsyg.2013.00541
PubMed: 23970875
PubMed Central: PMC3748532


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pleasurable music affects reinforcement learning according to the listener.</title>
<author>
<name sortKey="Gold, Benjamin P" sort="Gold, Benjamin P" uniqKey="Gold B" first="Benjamin P" last="Gold">Benjamin P. Gold</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cognitive Brain Research Unit, Institute of Behavioral Sciences, University of Helsinki Helsinki, Finland ; Department of Music, Finnish Center of Excellence in Interdisciplinary Music Research, University of Jyväskylä Jyväskylä, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Cognitive Brain Research Unit, Institute of Behavioral Sciences, University of Helsinki Helsinki, Finland ; Department of Music, Finnish Center of Excellence in Interdisciplinary Music Research, University of Jyväskylä Jyväskylä</wicri:regionArea>
<wicri:noRegion>University of Jyväskylä Jyväskylä</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Frank, Michael J" sort="Frank, Michael J" uniqKey="Frank M" first="Michael J" last="Frank">Michael J. Frank</name>
</author>
<author>
<name sortKey="Bogert, Brigitte" sort="Bogert, Brigitte" uniqKey="Bogert B" first="Brigitte" last="Bogert">Brigitte Bogert</name>
</author>
<author>
<name sortKey="Brattico, Elvira" sort="Brattico, Elvira" uniqKey="Brattico E" first="Elvira" last="Brattico">Elvira Brattico</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23970875</idno>
<idno type="pmid">23970875</idno>
<idno type="doi">10.3389/fpsyg.2013.00541</idno>
<idno type="pmc">PMC3748532</idno>
<idno type="wicri:Area/Main/Corpus">001126</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001126</idno>
<idno type="wicri:Area/Main/Curation">001126</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001126</idno>
<idno type="wicri:Area/Main/Exploration">001126</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Pleasurable music affects reinforcement learning according to the listener.</title>
<author>
<name sortKey="Gold, Benjamin P" sort="Gold, Benjamin P" uniqKey="Gold B" first="Benjamin P" last="Gold">Benjamin P. Gold</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cognitive Brain Research Unit, Institute of Behavioral Sciences, University of Helsinki Helsinki, Finland ; Department of Music, Finnish Center of Excellence in Interdisciplinary Music Research, University of Jyväskylä Jyväskylä, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Cognitive Brain Research Unit, Institute of Behavioral Sciences, University of Helsinki Helsinki, Finland ; Department of Music, Finnish Center of Excellence in Interdisciplinary Music Research, University of Jyväskylä Jyväskylä</wicri:regionArea>
<wicri:noRegion>University of Jyväskylä Jyväskylä</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Frank, Michael J" sort="Frank, Michael J" uniqKey="Frank M" first="Michael J" last="Frank">Michael J. Frank</name>
</author>
<author>
<name sortKey="Bogert, Brigitte" sort="Bogert, Brigitte" uniqKey="Bogert B" first="Brigitte" last="Bogert">Brigitte Bogert</name>
</author>
<author>
<name sortKey="Brattico, Elvira" sort="Brattico, Elvira" uniqKey="Brattico E" first="Elvira" last="Brattico">Elvira Brattico</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in psychology</title>
<idno type="ISSN">1664-1078</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mounting evidence links the enjoyment of music to brain areas implicated in emotion and the dopaminergic reward system. In particular, dopamine release in the ventral striatum seems to play a major role in the rewarding aspect of music listening. Striatal dopamine also influences reinforcement learning, such that subjects with greater dopamine efficacy learn better to approach rewards while those with lesser dopamine efficacy learn better to avoid punishments. In this study, we explored the practical implications of musical pleasure through its ability to facilitate reinforcement learning via non-pharmacological dopamine elicitation. Subjects from a wide variety of musical backgrounds chose a pleasurable and a neutral piece of music from an experimenter-compiled database, and then listened to one or both of these pieces (according to pseudo-random group assignment) as they performed a reinforcement learning task dependent on dopamine transmission. We assessed musical backgrounds as well as typical listening patterns with the new Helsinki Inventory of Music and Affective Behaviors (HIMAB), and separately investigated behavior for the training and test phases of the learning task. Subjects with more musical experience trained better with neutral music and tested better with pleasurable music, while those with less musical experience exhibited the opposite effect. HIMAB results regarding listening behaviors and subjective music ratings indicate that these effects arose from different listening styles: namely, more affective listening in non-musicians and more analytical listening in musicians. In conclusion, musical pleasure was able to influence task performance, and the shape of this effect depended on group and individual factors. These findings have implications in affective neuroscience, neuroaesthetics, learning, and music therapy. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">23970875</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>08</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-1078</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in psychology</Title>
<ISOAbbreviation>Front Psychol</ISOAbbreviation>
</Journal>
<ArticleTitle>Pleasurable music affects reinforcement learning according to the listener.</ArticleTitle>
<Pagination>
<MedlinePgn>541</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpsyg.2013.00541</ELocationID>
<Abstract>
<AbstractText>Mounting evidence links the enjoyment of music to brain areas implicated in emotion and the dopaminergic reward system. In particular, dopamine release in the ventral striatum seems to play a major role in the rewarding aspect of music listening. Striatal dopamine also influences reinforcement learning, such that subjects with greater dopamine efficacy learn better to approach rewards while those with lesser dopamine efficacy learn better to avoid punishments. In this study, we explored the practical implications of musical pleasure through its ability to facilitate reinforcement learning via non-pharmacological dopamine elicitation. Subjects from a wide variety of musical backgrounds chose a pleasurable and a neutral piece of music from an experimenter-compiled database, and then listened to one or both of these pieces (according to pseudo-random group assignment) as they performed a reinforcement learning task dependent on dopamine transmission. We assessed musical backgrounds as well as typical listening patterns with the new Helsinki Inventory of Music and Affective Behaviors (HIMAB), and separately investigated behavior for the training and test phases of the learning task. Subjects with more musical experience trained better with neutral music and tested better with pleasurable music, while those with less musical experience exhibited the opposite effect. HIMAB results regarding listening behaviors and subjective music ratings indicate that these effects arose from different listening styles: namely, more affective listening in non-musicians and more analytical listening in musicians. In conclusion, musical pleasure was able to influence task performance, and the shape of this effect depended on group and individual factors. These findings have implications in affective neuroscience, neuroaesthetics, learning, and music therapy. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gold</LastName>
<ForeName>Benjamin P</ForeName>
<Initials>BP</Initials>
<AffiliationInfo>
<Affiliation>Cognitive Brain Research Unit, Institute of Behavioral Sciences, University of Helsinki Helsinki, Finland ; Department of Music, Finnish Center of Excellence in Interdisciplinary Music Research, University of Jyväskylä Jyväskylä, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Frank</LastName>
<ForeName>Michael J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bogert</LastName>
<ForeName>Brigitte</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brattico</LastName>
<ForeName>Elvira</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>08</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Psychol</MedlineTA>
<NlmUniqueID>101550902</NlmUniqueID>
<ISSNLinking>1664-1078</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">dopamine</Keyword>
<Keyword MajorTopicYN="N">listening strategy</Keyword>
<Keyword MajorTopicYN="N">music</Keyword>
<Keyword MajorTopicYN="N">musical experience</Keyword>
<Keyword MajorTopicYN="N">pleasure</Keyword>
<Keyword MajorTopicYN="N">reinforcement learning</Keyword>
<Keyword MajorTopicYN="N">reward</Keyword>
<Keyword MajorTopicYN="N">subjectivity</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>07</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23970875</ArticleId>
<ArticleId IdType="doi">10.3389/fpsyg.2013.00541</ArticleId>
<ArticleId IdType="pmc">PMC3748532</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Neurosci. 1998 Aug;1(4):304-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10195164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 1999 Apr;2(4):382-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10204547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 1999 Apr 26;10(6):1309-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10363945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Rev. 1999 Jul;106(3):529-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10467897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychosom Med. 2000 May-Jun;62(3):386-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10845352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11818-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11573015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2002 Oct 10;36(2):241-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12383780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pers Soc Psychol. 2003 Jun;84(6):1236-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12793587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2003 Oct 8;23(27):9240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Apr 16;304(5669):452-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15087550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 2004 Jun 7;15(8):1279-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15167549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 10;306(5703):1940-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15528409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2005 Feb;161(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15551089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2005 Oct 15;28(1):175-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16023376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2005 Sep;8(9):1148-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cognition. 2006 May;100(1):100-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16412412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Neurobiol. 2006 Apr;16(2):199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16563737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 2006 Jul 31;17(11):1225-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16837859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychopharmacology (Berl). 2007 Apr;191(3):507-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Psychol. 2007 May;98(Pt 2):175-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17456267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2007 Oct 1;37(4):1437-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17689985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16311-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17913879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Nov 23;318(5854):1309-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17962524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2008 Feb;20(2):226-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18275331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Feb 29;319(5867):1264-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18309087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2008 Dec 24;28(52):14311-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19109512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Mar 11;29(10):3019-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Med. 2010 Mar;40(3):433-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19607754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2009 Aug;12(8):1062-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19620978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Oct 16;4(10):e7487</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19834599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Psychophysiol. 2010 Apr;76(1):40-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20153786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychophysiology. 2011 Mar;48(3):337-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20701708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Dec 16;5(12):e13812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21179549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2011 Feb;14(2):257-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Feb 2;31(5):1606-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21289169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Apr 20;31(16):6188-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21508242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2012 Mar;22(3):527-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21693491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2011 Sep 1;58(1):250-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21699987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(11):e27241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Gen Psychiatry. 2011 Dec;68(12):1257-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22147843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2012 Feb 23;73(4):633-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22365540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2012 Feb 23;73(4):653-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22365542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2012 May 15;61(1):289-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22406357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychopharmacology. 2012 Jul;37(8):1945-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22491353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2012 Jun;135(Pt 6):1871-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22508958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Sci. 2012 Jun;35(3):121-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22617651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cogn Emot. 2013;27(1):184-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22764739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2013 Sep;23(9):2213-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22832388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>GMS Z Med Ausbild. 2012;29(4):Doc56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22916082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Iperception. 2011;2(9):1035-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23145260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Rev. 2013 Jan;120(1):190-229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23356780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Neurobiol. 2013 Jun;23(3):294-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23375169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2013 Jul;25(7):1062-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23410032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Apr 12;340(6129):216-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23580531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q J Econ. 2010 Dec 31;125(3):923-960</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25018564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dement Neuropsychol. 2010 Oct-Dec;4(4):277-286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29213699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cogn Emot. 2003 Mar;17(2):263-295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29715723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychopharmacologia. 1966;10(1):6-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5982984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1994 Apr;14(4):1908-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8158246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Brain Res Rev. 1993 Sep-Dec;18(3):247-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8401595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Oct 14;365(6447):611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8413624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1996 Mar 1;16(5):1936-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8774460</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Finlande</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bogert, Brigitte" sort="Bogert, Brigitte" uniqKey="Bogert B" first="Brigitte" last="Bogert">Brigitte Bogert</name>
<name sortKey="Brattico, Elvira" sort="Brattico, Elvira" uniqKey="Brattico E" first="Elvira" last="Brattico">Elvira Brattico</name>
<name sortKey="Frank, Michael J" sort="Frank, Michael J" uniqKey="Frank M" first="Michael J" last="Frank">Michael J. Frank</name>
</noCountry>
<country name="Finlande">
<noRegion>
<name sortKey="Gold, Benjamin P" sort="Gold, Benjamin P" uniqKey="Gold B" first="Benjamin P" last="Gold">Benjamin P. Gold</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001132 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001132 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23970875
   |texte=   Pleasurable music affects reinforcement learning according to the listener.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23970875" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021